Detection and quantification of snow algae with an airborne imaging spectrometer.

نویسندگان

  • T H Painter
  • B Duval
  • W H Thomas
  • M Mendez
  • S Heintzelman
  • J Dozier
چکیده

We describe spectral reflectance measurements of snow containing the snow alga Chlamydomonas nivalis and a model to retrieve snow algal concentrations from airborne imaging spectrometer data. Because cells of C. nivalis absorb at specific wavelengths in regions indicative of carotenoids (astaxanthin esters, lutein, beta-carotene) and chlorophylls a and b, the spectral signature of snow containing C. nivalis is distinct from that of snow without algae. The spectral reflectance of snow containing C. nivalis is separable from that of snow without algae due to carotenoid absorption in the wavelength range from 0.4 to 0.58 microm and chlorophyll a and b absorption in the wavelength range from 0.6 to 0.7 microm. The integral of the scaled chlorophyll a and b absorption feature (I(0.68)) varies with algal concentration (C(a)). Using the relationship C(a) = 81019.2 I(0.68) + 845.2, we inverted Airborne Visible Infrared Imaging Spectrometer reflectance data collected in the Tioga Pass region of the Sierra Nevada in California to determine algal concentration. For the 5.5-km(2) region imaged, the mean algal concentration was 1,306 cells ml(-1), the standard deviation was 1,740 cells ml(-1), and the coefficient of variation was 1.33. The retrieved spatial distribution was consistent with observations made in the field. From the spatial estimates of algal concentration, we calculated a total imaged algal biomass of 16.55 kg for the 0.495-km(2) snow-covered area, which gave an areal biomass concentration of 0.033 g/m(2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hyperspectral Method for Remotely Sensing the Grain Size of Snow

We have developed a robust, accurate inversion techare useful indicators of thermodynamic processes in the snowpack. Changes in snow grain size can help identify nique for estimating the grain size in a snowpack’s surface ice sheet surface features, such as melt areas, snow dunes, layer from imaging spectrometer data. Using a radiative and blue ice regions, and often indicate changes in snowtra...

متن کامل

Improving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT

Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...

متن کامل

Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data

We describe and validate an automated model that retrieves subpixel snow-covered area and effective grain size from Airborne Visible/ Infrared Imaging Spectrometer (AVIRIS) data. The model analyzes multiple endmember spectral mixtures with a spectral library of snow, vegetation, rock, and soil. We derive snow spectral endmembers of varying grain size from a radiative transfer model; spectra for...

متن کامل

Evaluation of the performance of MERIS spectrometer data in snow cover monitoring in the boreal forest belt

This paper describes a work plan for the evaluation of the capabilities and performance of Medium Resolution Imaging Spectrometer (MERIS) data for monitoring snow covered land surfaces, specifically in the boreal forest belt. The performance of MERIS over snow in the northern latitudes is mainly estimated by comparison of time series derived from MERIS surface reflectance against values derived...

متن کامل

Measuring the expressed abundance of the three phases of water with an imaging spectrometer over melting snow

[1] From imaging spectrometer data, we simultaneously estimate the abundance of the three phases of water in an environment that includes melting snow, basing the analysis on the spectral shift in the absorption coefficient between water vapor, liquid water, and ice at 940, 980, and 1030 nm respectively. We apply a spectral fitting algorithm that measures the expressed abundance of the three ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 67 11  شماره 

صفحات  -

تاریخ انتشار 2001